



## Effect of Dietary Crude Protein Levels on Survival and Growth of Gilthead Sea Bream in The Recirculating Aquaculture System

Alaa A. E. El-Dahhar<sup>1</sup>, Rasha I. Elwan<sup>2</sup>, Shimaa A. Shahin<sup>1</sup>, Samy Y. EL-Zaeem<sup>1</sup>; and Amr M. Helal<sup>2</sup>

- 1. Animal and Fish Production Dept., Faculty of Agriculture (Saba Basha) Alexandria University PO Box 21531, Bolkly Alexandria Egypt
- 2. National Institute of Oceanography and Fisheries, Alexandria

\*Corresponding Author

| ARTICLE INFO           | ABSTRACT                                                                                                                                                                                                                                                                                                     |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gilthead Sea Bream,    | The recirculating aquaculture system investigated the effect of dietary crude protein levels                                                                                                                                                                                                                 |
| Dietary protein level, | on the survival and growth of Gilthead Sea bream fingerlings. Thirteen fish (average weight 33.3 g) per                                                                                                                                                                                                      |
| Survival and growth    | tank were randomly distributed, in triplicate groups, in a recirculating rearing system (27±1°C) and fed                                                                                                                                                                                                     |
| RAS                    | at satiate rate using five iso-nitrogenous diets with increasing protein levels (30, 34, 38, 42 and 45% for 42 days). The result showed that Growth performance increased significantly ( $P \le 0.01$ ) with increasing                                                                                     |
| Received 16/09/2020    | dietary crude protein level up to 38%, feed conversion ratio (FCR) improved significantly with increasing dietary crude protein level with the best value of (42%), feed utilization increased significantly (P ≤                                                                                            |
| Accepted 20/12/2020    | 0.01) with increasing dietary crude protein level and condition factor (K) increased with increasing protein level. Fish whole body composition showed that the lipid content of the fish decreased with increasing protein levels. Last, a protein level of 38% appears to be the most appropriate diet for |
|                        | gilthead sea bream reared in a recirculating aquaculture system, which makes gilthead sea bream's production economical.                                                                                                                                                                                     |

## INTRODUCTION

Growing aquaculture depends on the optimal balance between each nutrient's requirements, feeding regimen, fish stocking density, and water quality management. Therefore, the need to increase both productivity and fish quality is always the target of several research papers and reviews (El-Dahhar, AA, 2007; Tibbetts et al., 2005; Wang, Y et al., 2006). Aquaculture is growing more rapidly than any other animal food-producing sector globally. Around a billion people worldwide rely on fish with healthy lipids and essential nutrients (Department, 2005). Aquaculture, frequently known as aquatic plant and animal farming, is the world's most varied food-producing field, with over 277 species documented in 2016, including 20 aquatic plant species, 59 mollusk species, 27 crustacean species, and over 171 fish species (FAO, 2018). According to the latest FAO data, total worldwide aquaculture production climbed by 4.5 percent from 105.46 million t (live weight equivalent) in 2015 to a new high of 110.21 million t in 2016, with total production appreciated at US \$243.26 billion (Tacon, 2018).

Important fish species in this industry include Atlantic salmon, sea bass, sea bream, turbot, and, more recently, mullet and tuna. In the Mediterranean, the production of European Sea bass (E. Sea bass, *Dicentrarchus labrax*) and Gilthead Sea bream (G. Sea bream, *Sparus auratus*) has increased rapidly in the last decade. The Mediterranean Sea bass industry has expanded from producing 315 metric tons in 1984 to 17,000 metric tons in 2016 (FAO, 2018). Gilthead sea bream (Sparus aurata) is economically a very important aquaculture fish species in Greece and the general Mediterranean area. Intensive production of this species has produced signs of market

saturation and price crisis. It has raised concerns over the quality of cultured gilthead seabream, especially in comparison with wild fish (Grigorakis, 1999).

Fish quality has been defined as "a combination of such characteristics as wholesomeness, integrity, and freshness" (Martin, 1988). Within the former definition, "wholesomeness" is the "quality of a food fit to eat, clean and uncontaminated, and packed and stored in a sanitary environment," and "integrity" is a "product being what it is supposed to be according to the suppliers claims." Finally, "freshness" is a "quality of appearance, taste, and texture." Organoleptic properties and nutritional value are two sets of characteristics that, together with freshness, consist of fish quality as perceived by the consumer. Both characteristics strongly depend on the chemical composition of the fish, which in turn depends on many qualityaffecting factors that include intrinsic characteristics of the fish (such as species, age, sex, etc.), environmental factors (temperature, salinity, etc.) and feeding history (diet composition, feeding ratio, etc. (Grigorakis, 1999; Huss, 1995). High-quality feeds and optimal levels of essential nutrients are aimed at improving growth performance (Kiron, 2012; Pirozzi et al., 2010).

Knowing about fish feeding habits is important in fish farming because feeding regimes may affect growth efficiency and feed wastage (Tsevis and Azzaydi, 2000).

Protein is the costliest macro component in fish feeds. Generally, in practical diets for intensively cultured species, the bulk of the protein component is provided by fishmeal (Wijkstrom and New, 1989). Fish culture has been identified

## EL-DAHHAR ET AL.

تأثير مستويات بروتين الغذاء على بقاء ونمو إصبعيات الدنيس في نظام إعادة تدوير المياه علاء عبد الكريم الدحار ١، سلمي يحيى الزعيم ١، شيماء عبد السميع شاهين ١، عمرو منير هلال ٢، رشا إسماعيل بدر علوان ٢،

ا. قسم الانتاج الحيوانى والسمكى، كلية الزراعة سابا باشا جامعة الاسكندرية
٢. قسم تربية الأحياء المانية - المعهد القومى لعلوم البحار والمصايد - الإسكندرية

أجريت هذه الدراسة في معمل تربية الأسماك - المعهد القومي لعلوم البحار والمصايد بالتعاون مع معمل الأسماك البحرية - كلية الزراعة - سابا باشا - جامعة الإسكندرية حيث أجربت تجربه لدراسة تأثير مستوى بروتين الغذاء على جودة المياه وأداء النمو في نظام الاستزراع الماني لإعادة تدوير المياه. وقد تم الحصول على إصبعيات الدنيس من مزرعة الرطمة (دمياط) وقد استخدم تصميم القطاعات العشوانية الكاملة للتجربة على أن يتم تكرار المعاملات ثلاث مكررات. وقد استخدم ١٥ تنك فايبر جلاس بمقاس (٢٩ × ٢٠ × ٤ سم) مزودة بمصدر تهوية بكل تنك تحت ظروف الرعاية المناسبة في داخل الأنظمة المغلقة لإعادة تدوير المياه. ويتم تسكين ١٣ سمكة / تنك بمتوسط وزن ابتداني ٣٣,٣ جرام / سمكة وقد تم استخدام نسب بروتين خام في العلائق (٣٠ ، ٢٤ ، ٣٨ ، ٢١ و و ٤ %) كررت كل معاملة ثلالث مرات. واجريت هذه التجربة لدراسة تأثير مستويات البروتين الخام الغذائية على جودة المياه ، ومعايير أداء النمو والاستفادة من تغذية إصبعيات الدنيس (Sparus aurata) تم تغذيتها على على على ان الدنيس (Sparus aurata) تم تغذيتها على على على ان الدنيس (المساك نهاية كل ١٤ يوم و قد استمرت التجربة لمدة ٢١ يوما وقد تراوحت درجة الحرارة داخل الاحواض التجريبية من ٢٧ إلى توزن الاسماك نهاية كل ١٤ يوم و قد استمرت التجربة لمدة ٢١ يوما وقد تراوحت درجة الحرارة داخل الاحواض التجريبية من ٢٧ إلى كما تم خلال هذه التجربة متابعة معدلات نمو الأسماك وأيضا معايير جودة المياه وتحليل التركيب الكيماوي للأسماك في نهاية فترة التجربة وتقدير معايير الكفاءة. وقد أظهرت النتائج إلى أن أعلى وزن جسم وأعلي معدل تحول للغذاء تم تسجيله في الاسماك التي تم تغذيتها على على مستوى بروتين في غذاء الدنيس ( ٣٠٤٪)، (٣٠٪)، (٣٠٪) كما لوحظ لوحظ أعلى نسبة بروتين غذه ٤٠٪ تليها ٤٣٪، على النوالي و ٢٠٪. لا يوجد اختلاف جذري عند معنويه (٥٥ ح ٢) لوحظ في نسبة البروتين في غذاء الدنيس ( ٤٠٠٪) (٤٠٪) الموتين. (٣٠٪) كما لوحظ في نسبة البروتين في غذاء الدنيس ( ٤٠٠٪) (٤٠٪) وهر (٣٠٪). كما لوحظ في نسبة البروتين في غذاء الدنيس ( ٤٠٠٪) (٤٠٪) وهر (٣٠٪). (١٤٠٪) الموتين في غذاء الدنيس ( ٤٠٠٪) (٤٠٪) وهر (٣٠٪). وعلى مستويات مختلفة من البروتين.